

Unit Title: Solar Suitcase and Circuits

Grade Level: 10-12

Subject Area: Engineering Principles

Duration/Length/Number of class periods: 5 class periods

Description:

Students will learn the basic principles of both "series" and "parallel" electrical circuits, and employ them toward building "solar suitcases" to be deployed overseas to schools in need of sufficient lighting for students.

Established Goals (National, State, Local):

Proficiency in the following areas/understandings:

Science and Engineering Practices:

- a) Developing and using models
- b) Planning and Carrying out Investigations
- c) Using Mathematics and Computational Thinking
- d) Constructing Explanations and Designing Solutions

Disciplinary Core Ideas:

- a) PS3.A Definitions of Energy
- a) PS3.B Conservations of Energy and Energy Transfer
- b) PS3.C Relationship Between Energy and Forces
- c) PS3.D Energy in Chemical Processes
- d) ETS1.A Defining and Delimiting an Engineering Problem

Crosscutting Concepts:

- a) Cause and Effect
- b) Systems and System Models
- c) Energy and Matter

Connections to Engineering, Technology, and Applications of Science:

- Influence of Science, Engineering, and Technology on Society and the Natural World

Connections of Nature of Science

- Scientific Knowledge Assumes and Order and Consistency in Natural Systems

What Enduring Understandings are desired?

- Students will be able to distinguish basic characteristics between both a "series" and "parallel" circuit.
- Ability to follow the flow of electricity from the source (sun) to the load (light bulb, USB charger, etc.) through the solar suitcase system.
- Extent of global access to energy
- Basic DC electricity for solar
- System functioning principles

What Essential Questions will be considered?

- What kind of access do we have to energy on a global scale?
- Provide an overview of energy available and utilized in the U.S.
- What are the basic functions of DC electricity for solar powered systems?
- Describe the process of assembly and commissioning for a solar suitcase, and how it relates to a general electrical system.
- Design a stand-alone electrical system

Students will know / be able to:

- Understand and create both a "series" and "parallel" circuit with the various electrical connections made in their solar suitcases through the electrical connections necessary for its full functionality
- Fully build/assemble a functioning solar suitcase fit for deployment and real world use at another school in need of lighting for its students.

Description	Units must include at least one of each formative, summative, introductory activity and learning activity. Check the appropriate box; one per row.	For ma tive	Sum ma tiv e	Introd ucto ry Acti vity	Learn ing Acti vity	Stude nt Tec hnol ogy Use d	Teach er Tech nolog y Used	ISTE Stan dards
 Day 1: Electricity Basics 1. Introduce the topic 2. Present the Basic Electricity for Solar PowerPoint 3. Demonstrate the concept of power (volts x amps = bottle/Fulcrum set up (see the See-Saw Demo set up 4. Review vocabulary terms 5. Give Assessment: Basics of DC for Solar 	= watts) using the Water	Basic s of DC Electr icity for Solar Lab Work sheet		"Solar Cell," "Basic s of DC," and "Simpl e Solar Circuit s" Power Points	Stude nt Collab oratio n and Coope rative work on lab works heet	Classr oom Deskt ops	Promet hean Board	See "Discipl inary Core Ideas" above for ISTE STand ards
Day 2: The Solar Cell 6. Present the Simple Solar Circuits PowerPoint		PV Effect		"Simpl e	Stude nt	Same	Same	

	•••						
7. Complete the Lab: PV Effect with Mini Panels	with		Solar	collab			
8. Present the Understanding the Solar Cell PowerPoint	Mini Panel		ircuit s"	with Iab			
	s Lab		ower	lab			
	0 Lub		Point				
Days 3 & 4: System Assembly	Evalu		lassr	Stude	Solar	Solar	
1. Set up tables with System Assembly Guide, a Solar Suitcase, tool kit, and	ate	C	oom	nt	suitca	suitcas	
large sheet of white paper.	Syste	se	etup,	assem	se	e demo	
2. Remove battery from the solar suitcase and put them aside in a safe area	m		ntrod	bly of	assem	kit	
away from the students. Cover the battery terminals to prevent an accidental	ASse		ction	suitca	bly		
	mbly		of	se	compo nents		
short circuit. Students should not have access to the batteries during this exercise.			ssem bly		nems		
			uide,				
3. Provide and require all students to wear safety glasses when working on the		-	olar				
suitcase. This is important for the safety of everyone.		รเ	uitca				
4. Have students start by spreading out all the parts on top of the large piece of			se,				
white paper, organize them, and count and label each on the paper. This is very			and				
helpful to get familiar with all the parts and make sure that nothing is missing.		to	ol kit				
See the System Assembly Guide for details.							
5. Instruct students to complete the assembly process following the guide. It is							
important to follow the order of the guide, because some parts will be hard to bolt							
or wire if they are installed in a different order. Teachers should go between							
groups answering questions and making sure that all students are using the tools							
and are engaged. Students tend to get very excited about putting the suitcase							
together and may need to be slowed down, because it is important to be careful							
when assembling an electrical system, especially the one that is going to a							
remote part of the world. Make sure they not only look at the pictures in the							
guide, but also read the steps and the notes. Have students check off each step							
on the "System Assembly Checklist" as they complete it.							
6. Engage students during the assembly process by asking them questions							
about what they are doing, to make sure they understand why they are doing it.							
E.g., Why is the yellow solar wire going to a breaker and the white solar wire							
going straight to the charge controller? What is the function of the charge							
controller? What are the names of the various tools? At different points in the							
process, have each of the students show how the electricity will flow through the							
system. You will see that many of these questions are in the Assembly Guide.							
7. After the system is assembled, continue using the Quality Control Guide which							
is the following section in the Assembly Guide.							

Day 5: Assessment Quality Control Checklist	Man	System
Quality Control Checklist	ual	Design
	use	Checkli
	of	st
	chec	
	klist	
	to	
	chec	
	k for	
	syste	
	m	
	build	
	comp	
	letion	

Materials, tools and resources:

https://www.wesharesolar.org/

- Unit/Lesson Plans
- Content Tutorials
- Instruction/Assembly guide(s)
- Quality Control Checklist
- System Design Instructions
- Suitcase Deployment Guidelines

Unit Plan Author (name, school and optional email address or hyperlink to teacher's web page)

We Share Solar (Facilitated by Lars Peterson - Patrick Henry High School, Minneapolis, MN)

Additional credit given to:

We Care Solar/We Share Solar